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i FEELSFINES S Problem:

: | PP While previous work may not be able to capture global and local
representations of both textual and visual content within memes
and fails to capture contextual information,

Contributions:

* We release a manually annotated dataset of 10,244 memes to
identify vaccine critical memes on Twitter.

* We present a multimodal framework that learns global and local

THERVACCINE DIDNT EVEN HURT, et representations of visual and textual content within memes and
captures contextual information.
Figure 1: Examples of vaccine critical memes. Note that in * We show that the proposed multimodal framework outperforms

a meme shown on the left, an image becomes a humorous  state-of-the-art baselines with an F1-Score of 84.2% and also

way to identify that a meme is vaccine critical, whereas, for  o5tap|ish the transferability and generalis ability of the proposed
a meme on the right, a text suggests that a meme is vaccine framework

critical.
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Figure 2: Overall architecture of the proposed multimodal framework.
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Text representation learning
graph creation:

G = (V,E) Rr!VIxd

Vertex embeddings h €
Word relationship:
a' = Ah' 1w,
2t = o(Wea + U,k +by),
rl = o(Wya' + Uht L+ b)),
ht = tanh(Wya® + U, (rt - K71 + by),

hy=ht-Zl+h~1. (1-2Y,

Readout Operation:

ho = o(fi(hy)) - tanh(f2(hy)),

hG = Z hy + Maxpooling(hy, - - - hy),
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Figure 2: Overall architecture of the proposed multimodal framework.
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Classification
N N
—1 exp(zi) - (zj)/7)
LscL= ) ——— > lizj-14,=p, - log(
f; Ny -1 ; T Zf:l exp(zi) - (zx)/7)

(13)

Lcg = - Z ylog(y) (14)
c=1

L=(1-A)Lcg + ALscL (15)
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Table 2: Dataset Statistics

Data No. of No. of No. of Total
Pro-Vaccine Vaccine critical Neutral

Full Dataset 3983 3441 2820 10244

Timeline 1 (T1) 452 1679 1027 3158

Timeline 2 (T2) 1040 747 1062 2849

Timeline 3 (T3) 2491 1015 731 4237
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Table 3: Comparison: Proposed framework v/s the baselines.
* shows that our proposed framework obtained a significant

(p < 0.05) performance improvement over the second best
approach (underlined) under Mann-Whitney U test.

Type Model F1-Score Precision Recall
LSTM 68.48 69.22 68.69

GRU 68.56 68.73 68.73

Text only BERT 72.69 72.81 75.75
TextGCN 73.60 73.30 74.50

BertGCN 74.10 74.00 74.80

DenseNet 61.42 63.68 62.88

Image only ResNet 58.99 63.62 61.36
VGGNet 58.57 61.65 60.60

ViLBERT 77.23 76.73 76.27

Visual BERT 79.33 78.84 78.25

MMBT 78.97 78.61 78.13

DisMultiHate 80.10 80.35 79.10

. MVAE 80.67 81.00 79.58
Multimodal g\ \N 80.78 8113 79.69
MOMENTA 80.07 81.22 81.02

att-RNN 81.15 81.48 80.04

DGExplain 81.50 81.90 80.00

SeTa-Attn 81.65 82.36 80.96

Proposed 84.20" 85.00"  83.42"
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Timeline'\Models | T | T2 | 13
| F1-Score Precision Recall | F1-Score Precision Recall | F1-Score Precision Recall
BertGCN 71.20 71.50 71.40 66.10 67.00 67.10 67.50 67.40 67.30
T1 DensNet 55.07 55.23 58.78 51.02 52.94 55.39 52.09 53.30 54.28
SeTa-Attn 73.29 74.27 73.05 67.53 68.11 70.09 69.16 69.25 69.20
Propos ed 78.25 78.59 79.16 71.78 71.62 74.73 74.83 74.37 76.54
BertGCN 59.90 62.80 59.50 70.10 71.00 71.80 65.20 63.15 60.20
T2 DensNet 49 .84 52.64 54.55 54.32 53.94 57.69 50.18 51.94 53.68
SeTa-Attn 62.68 63.75 63.03 73.47 72.88 72.84 68.15 68.40 68.58
Propos ed 71.11 70.49 72.71 78.76 77.29 80.29 75.58 75.27 77.64
BertGCN 62.60 66.35 62.50 67.50 67.90 68.20 71.20 71.90 71.50
T3 DensNet 47.68 50.45 54.08 50.64 52.42 57.03 53.80 54.21 58.56
SeTa-Attn 66.87 64.83 69.51 68.58 69.16 72.91 74.61 73.97 75.27
Pr{)p{)s ed 71.25 71.09 71.92 75.82 75.21 77.30 79.18 78.64 78.39
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Table 5: Ablation analysis: Proposed framework w/o SCL
shows the result of using cross-entropy only as a loss func-
tion, i.e., without a supervised contrastive loss (SCL) from
the final loss. Proposed w/o ARL shows the results without
the attention representation learning (ARL) module from
the proposed method. Proposed w/o image ad proposed w/o
text represent the results without image and test features in
the proposed method. “indicates that the proposed frame-
work obtained a significant (p < 0.05) performance improve-

ment over other variants of the proposed method under the
Mann-Whitney U test.

Method F1-Score Precision Recall

Proposed 84.20" 85.00  83.42"

Proposed w/o SCL 82.70 82.86 82.82
Proposed w/o ARL 80.17 79.86 80.16
Proposed w/o image features ~ 78.40 78.51 78.45

Proposed w/o text features 64.10 64.66 65.35
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Ground Truth:Vaccine critical Ground Truth:Vaccine critical Ground Label: Pro-Vaccine
Predicted Label:VVaccine critical Predicted Label: VVaccine critical Predicted Label: Pro-Vaccine

Figure 3: Qualitative analysis: Examples of memes that are correctly predicted by the proposed method.
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Ground Truth: Vaccine critical

Ground Truth:Vaccine critical

Predicted Label: Neutral

Predicted Label: Neutral

Figure 4: Error analysis: Examples of the memes that are

incorrectly predicted by the proposed method.
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